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Introduction

P.A. Merolla et al., “A million spiking-neuron integrated circuit with a 

scalable communication network and interface,” Science, Aug. 2014.

Memory CPU
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Artificial Neural Network

Conventional computing

 von Neumann architecture 

 Accurate with full precision binary computing

 High cost in area and energy consumption 

 Memory wall problem

Human brain 

 Consumes ~20W power

 Does not perform precise computing

 Very well recognizes objects

Memory CPU
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Artificial Neural Network

 Neural network models & implementations

 Perceptron model
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Mostly MAC operations
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 Neural network models & implementations
 Convolutional neural networks (CNNs)

Artificial Neural Network
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A. Krizhevsky et al., "ImageNet classification with 

deep convolutional neural networks, NIPS 2012.
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Artificial Neural Network

 Neural network models & implementations
 Convolutional neural networks (CNNs)

K. He et al., "Deep residual learning for 

image recognition," CVPR 2016.

A. Krizhevsky et al., "ImageNet classification with 

deep convolutional neural networks, NIPS 2012.
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Artificial Neural Network

Deployments

Qualcomm Snapdragon 845 Huawei Kirin 970

Apple A11 Bionic

Google TPU 3.0

Samsung Exynos 9820
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Artificial Neural Network

P.A. Merolla et al., “A million spiking-neuron integrated circuit with a 

scalable communication network and interface,” Science, Aug. 2014.

Memory CPU

Still inefficient
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Artificial Neural Network

Near-data processing

 TETRIS 

M. Gao et al., "TETRIS: scalable and efficient neural network acceleration with 3D memory," ASPLOS 

2017.
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Network Reduction

 Weight pruning

 Y. Guo et al., “Dynamic network surgery for efficient dnns,” 
NIPS 2016

 S. Han et al., “Learning both weights and connections for 
efficient neural network,” NIPS 2015

 Filter pruning

 H. Hu et al., “ Network trimming: A data-driven neuron 
pruning approach towards efficient deep architectures,” 
arXiv:1607.03250, 2016.

 J.-H. Luo and J. Wu, “Autopruner: An end-to-end trainable 
filter pruning method for efficient deep model inference,” 
arXiv:1805.08941, 2018

 Knowledge distillation

 G. Hinton et al.’ “Distilling the knowledge in a neural net
work,” NIPS Workshop 2014

 J. Yoo et al., “Network recasting: a universal method for 
network architecture transformation,” AAAI, 2019. 

11

Network Reduction

Network recasting

 Layer-by-layer application of knowledge distillation

 Recasting into an arbitrary target block

J. Yoo et al., “Network recasting: a universal 

method for network architecture transformation,” 

AAAI, 2019. 
Source Target
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Network Reduction

Filter-pruning effect

13

Network Reduction

Performance

 Much less memory access due to reduced activation

Comparison with previous works. (batch size is 64, NVIDIA Titan X (pascal))

14



5/25/2019

8

Zero Skipping

 Exploiting zeros in inputs

 J. Albericio et al., “Cnvlutin: ineffectual-neuron-free deep 
neural network computing,” ISCA, 2016

 P. Judd et al., “Stripes: Bit-serial Deep Neural Network 
Computing ,” Computer Architecture Letters, 2016

 D. Kim et al., “ZeNA: Zero-Aware Neural Network 
Accelerator,” IEEE Design & Test, Feb. 2018

 Exploiting zeros in outputs

 V. Akhlaghi et al., “SnaPEA: Predictive Early Activation for 
Reducing Computation in Deep Convolutional Neural 
Networks,” ISCA 2018

 D. Lee et al., “ComPEND: computation pruning through early 
negative detection,” ICS, 2018

 For training

 G. Lee et al., “Acceleration of DNN Backward Propagation by 
Selective Computation of Gradients,” DAC 2019, to be 
presented.

15

 ComPEND
 Computation Pruning through Early Negative Detection 

 Motivation

 Perceptron model

 Rectified linear unit (ReLU, [f(x) = max(0,x)]) is widely used as an 
activation function for DNN

 If we know a priori that x ≤ 0, we can skip unnecessary computations

Zero Skipping

16
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D. Lee et al., “ComPEND: computation pruning through early negative detection,” ICS, June 2018.
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Zero Skipping

 Early Negative Detection (END)

 Two’s complement number representation (4 bits)

17

0000 = -0+0 = +0

0001 = -0+1 = +1

0010

0011

0100

0101

0110

0111

1000         .

1001         .

1010         .

1011

1100 = -8+4 = -4

1101 = -8+5 = -3

1110 = -8+6 = -2

1111 = -8+7 = -1

𝑊 = 𝑤𝐵−1 × (−2𝐵−1) +
𝑘=0

𝐵−2

𝑤𝑘 × +2𝑘

Negative

Positive

For a B-bit number 𝑊 : ( 𝑤𝐵−1 𝑤𝐵−2 𝑤𝐵−3…𝑤1 𝑤0)

Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement number representation (4 bits)
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0000 = +0-0 = -0

0001 = +0-1 = -1

0010

0011

0100

0101

0110

0111

1000 .

1001 .

1010 .

1011

1100 = +8-4 = +4

1101 = +8-5 = +3

1110 = +8-6 = +2

1111 = +8-7 = +1

𝑊 = 𝑤𝐵−1 × (+2𝐵−1) +
𝑘=0

𝐵−2

𝑤𝑘 × −2𝑘

Positive

Negative

For a B-bit number 𝑊 : ( 𝑤𝐵−1 𝑤𝐵−2 𝑤𝐵−3…𝑤1 𝑤0)
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Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement for negative detection
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Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

Weight:

ReLU

Decimal 2’s complement Inverted 2’s complement
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bit serial
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Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement for negative detection

Weight:

ReLU
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Zero Skipping

 Early Negative Detection (END)

 Inverted two’s complement for negative detection
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Zero Skipping
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 Early Negative Detection (END)

 Inverted two’s complement for negative detection

00 0 0-

10 0 1-

Weight:

ReLU
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Zero Skipping
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 Early Negative Detection (END)

 Inverted two’s complement for negative detection
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Zero Skipping
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 Early Negative Detection (END)

 Inverted two’s complement for negative detection
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Zero Skipping

 ComPEND architecture
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Zero Skipping

Comparison with other architectures

27

Eyeriss DaDianNao ComPEND
(w/o zero-skipping)

Precision 16 16 16

Technology 65 nm 28 nm 45 nm

Clock frequency 250 MHz 606 MHz 1000 MHz

Throughput 42 GMACS 2,790 GMACS 288 GMACS

Core Area 12.25 mm2 67.73 mm2 5.62 mm2

Area efficiency 3.43 GMACS/mm2 41.19 GMACS/mm2 51.25 GMACS/mm2

Power 450 mW 15,970 mW 1,180 mW

Power efficiency 93.3 GMACS/W 174.7 GMACS/W 244.1 GMACS/W

Zero Skipping

28

Runtime

 ComPEND reduces runtime by 16.62% on average

Left bars: without ComPEND 

Right bars: with ComPEND 

• MEM_STT: reads/writes between off-chip 
memory and STT-RAM

• STT_WB: runtime of reads/writes between 
STT-RAM and WB

• MEM_WB: reads/writes between off-chip 
memory and WB

• MEM_AB: reads/writes between off-chip 
memory and AB

• AB_PU: reads/writes between AB and 
registers in PUs

• RUN_PU: computation in PUs

< for VGG-16 layers >
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Zero Skipping
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Energy (dynamic & static) consumption

 ComPEND reduces energy by 23.50% on average

• D/S_CTRL: global controller

• D/S_NET: provider network

• D/S_STT: STT-RAM.

• D/S_AB: activation buffers

• D/S_WB: weight buffer

• D/S_PU: processing units

Left bars: without ComPEND 

Right bars: with ComPEND 
< for VGG-16 layers >

Zero Skipping
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Zero skipping for training

 Skipping gradient computation on zero activation

 𝑎𝑜𝑢𝑡 = 𝑓ReLU 𝑎𝑖𝑛 = ቊ
𝑎𝑖𝑛 , 𝑎𝑖𝑛 > 0
0, 𝑎𝑖𝑛 ≤ 0

𝑎𝑜𝑢𝑡 = 0 ⇒
𝜕𝑎𝑜𝑢𝑡

𝜕𝑎𝑖𝑛
= 0

 In backward propagation 
𝜕𝐸

𝜕𝑎𝑖𝑛
=

𝜕𝐸

𝜕𝑎𝑜𝑢𝑡
∙
𝜕𝑎𝑜𝑢𝑡

𝜕𝑎𝑖𝑛

No need to compute gradient 𝑔𝑎𝑜𝑢𝑡
𝑙 𝑥, 𝑦, 𝑧 , if 𝑎𝑜𝑢𝑡 = 0

𝑔𝑎𝑜𝑢𝑡
𝑙 𝑥, 𝑦, 𝑧 =



𝑖=0

𝐹𝑥−1



𝑗=0

𝐹𝑦−1



𝑘=0

𝐹𝑛−1

𝑔𝑎
𝑙+1(𝑥 + 𝑖, 𝑦 + 𝑗, 𝑘) × 𝑤𝑙(𝑖, 𝑗, 𝑧, 𝑘)

saves 𝐹𝑥 × 𝐹𝑦 × 𝐹𝑛 MAC operations
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𝑔𝑎
𝑜𝑢𝑡
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Zero Skipping
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Zero skipping for training

Low-Precision Computing

Inference

 8-bit

 Google TPU 1

 Binary

 Trade-off between precision and accuracy

Training

 Dynamic fixed-point

 Bengio

 DAL

 16-bit FP

 NVDIA: half-precision FP, 1-5-10, scaling

 Google: bfloat, 1-8-7

 8-bit

 IBM: stochastic rounding

 Intel: range batch normalization + bifurcation

32
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Still not efficient enough

Computing in Analog

P.A. Merolla et al., “A million spiking-neuron integrated circuit with a 

scalable communication network and interface,” Science, Aug. 2014.

Memory CPU

33

Various ways of implementing neural 
networks

Solutions in 

between

Computing in Analog

Neural Network

Spiking

Non-von Neumann

Analog Digital General 

Purpose

+ 

Accelerator

General 

Purpose

ASIC FPGA GPU

Mixed

Memory CPU

von Neumann

Non-spiking

Non-von Neumann von Neumann

34
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Computing in Analog

BNN (Binarized Neural Network)

 MAC operations in analog

+…

W1

W2

Wj

x1

x2

xj

sign(u) +1 or 0X

+1 or -1

1

bias (8~32 bits)

BN

Multiplication & addition
(8~32 bits)

+1 or -1

35

Computing in Analog

Accuracy

Network W Act CIFAR-10 
ACC

(4 conv, 2 fc)

CIFAR-10
ACC 

(6 conv, 3 fc)

DNN 
(baseline)

Float32 Float32 85.60% 91.11%

BWN 1-bit (1, -1) Float32 84.21% 
(-1.39%p)

90.64% 
(-0.47%p)

BNN 1-bit (1, -1) 1-bit (1, -1) 77.13% 
(-8.47%p)

88.89% 
(-2.22%p)

36
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Computing in Analog

Mixed-signal implementation of BNN

X. Sun et al., “XNOR-RRAM: A Scalable and Parallel Resistive Synaptic Architecture for Binary Neural 

Networks,” DATE 2018.

37

Computing in Analog

BNN (Binarized Neural Network)

 MAC operations in analog

+…

W1

W2

Wj

x1

x2

xj

sign(u) +1 or 0X

+1 or 0 (not -1)

1

bias (8~32 bits)

BN

Multiplication & addition
(8~32 bits)

+1 or -1

38
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Computing in Analog

Binarized Spiking Neural Network (BSNN)

Network W Act CIFAR-10 
ACC

(4 conv, 2 fc)

CIFAR-10
ACC 

(6 conv, 3 fc)

DNN 
(baseline)

Float32 Float32 85.60% 91.11%

BWN 1-bit (1, -1) Float32 84.21% 
(-1.39%p)

90.64% 
(-0.47%p)

BNN 1-bit (1, -1) 1-bit (1, -1) 77.13% 
(-8.47%p)

88.89% 
(-2.22%p)

SNN Float32 1-bit (1, 0) 78.73% 
(-6.87%p)

88.01% 
(-3.1%p)

BSNN 1-bit (1, -1) 1-bit (1, 0) 77.25%
(-8.35%p)

87.85% 
(-3.26%p)

39

Computing in Analog

ReRAM-based implementation of BNN

 27x32 binary weights + 5x32 biases in a tile

 Array of tiles 

40
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Computing in Analog

Comparison

Implementation
JSSC '17

ASP-DAC '1
7

ISLPED '17 DATE '18 ISSCC '18 Ours

Network CNN CNN CNN MVM CNN MLP

# Parameters 0.26M 1.26M 14.03M 0.07M 1.88M 0.53M

Technology 65nm 45nm 40nm 65nm 28nm 32nm

Latency - - 1.6ms* 13.7ns 4.2ms 2.1ns

Area (mm2) 3.61 0.06 1.02 0.05 5.76 0.15

Power (mW) - - 6.3 67.9* 0.9 519.6

Energy (nJ) 79.72 13550 9815* 0.93* 3790 1.09

Energy efficiency 
(TOPS/W)

0.048 0.962* 126 141 532 970

* Data calculated based on the numbers in the paper

How good is ~1 POPS/W?

 Human brain

• Power consumption: ~10W

• Number of synapses: ~1015

• Firing rate of one synapse: ~10 spikes/sec

• Max. power efficiency: 1015 × 10 / 10 = 1 POPS/W

41

Conclusion

For an efficient neural processing

 Network reduction

 Zero skipping

 Low-precision computing

 Computing in analog

 …

Many new areas to be explored

 Exploiting NVMs and in-memory-computing

 Exploiting information in timing

 Spiking neural network

 New training algorithm for efficiency

 …

42


