

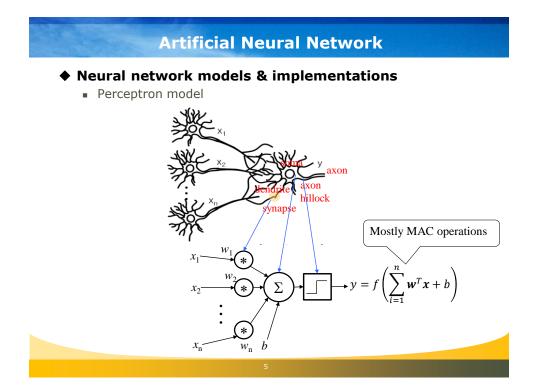
Artificial Neural Network

Conventional computing

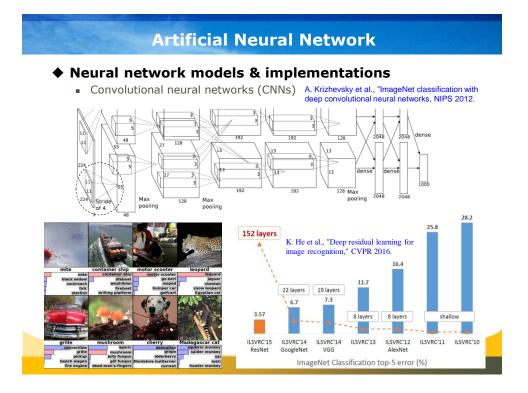
- von Neumann architecture
- Accurate with full precision binary computing
- High cost in area and energy consumption
- Memory wall problem

♦ Human brain

- Consumes ~20W power
- Does not perform precise computing
- Very well recognizes objects



Artificial Neural Network Neural network models & implementations Convolutional neural networks (CNNs) A. Krizhevsky et al., "ImageNet classification with deep convolutional neural networks, NIPS 2012. 192 128 Max pooling 2048 204 Max pooling Max w_1 x_1 * w_2 * Σ x_2 * x_n \overline{w}_n b



Artificial Neural Network

Deployments

 Best Appendix
 Care CPU
 12-Care CPU

 Kernin APU
 table
 table
 table

 Kernin APU
 table
 table
 table

 Kernin APU
 table
 table
 table

 Global Model
 Mall
 table
 table

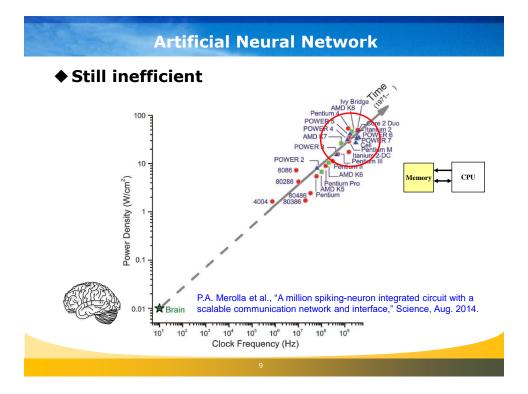
 4K Video
 HF1 and Carnera 15^o (Shari valid)
 table
 table

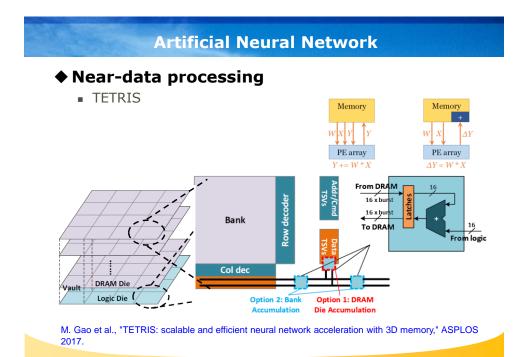
 LPDDR 4K
 UF5 2.1
 table
 table

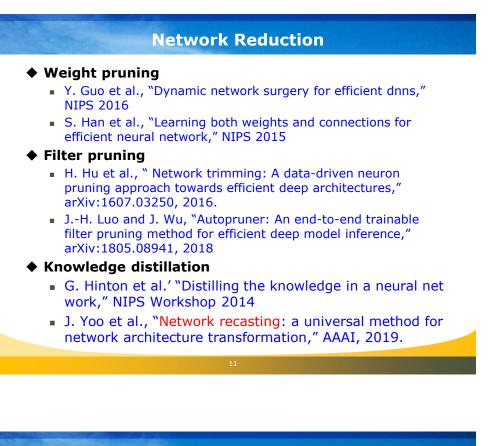
 17 Sensor Processor
 Security Engine
 table
 table

Huawei Kirin 970

Apple A11 Bionic Samsung Exynos 9820



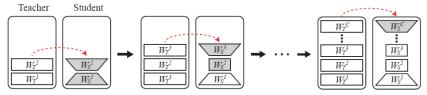




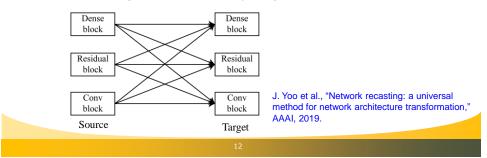
Network Reduction

Network recasting

• Layer-by-layer application of knowledge distillation

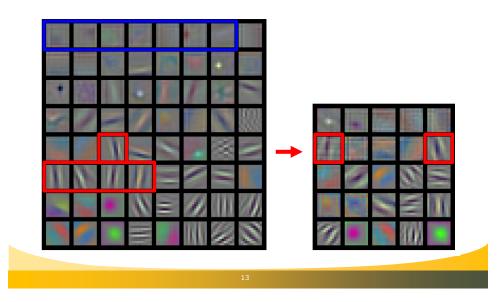


Recasting into an arbitrary target block



Network Reduction

♦ Filter-pruning effect



Network Reduction

♦ Performance

Much less memory access due to reduced activation

Method	Top1	Top5	Params	Mults	Actual speed-up
		ResNet-	50		
Recasting(C+ R_{bt})	25.00	7.71	21.72M	2.40B	2.1 ×
ThiNet-30 [1]	31.58	11.7	8.66M	1.10B	$1.3 \times$
AutoPruner $(r = 0.3)$ [2]	27.47	8.89	-	1.32B	-
		VGG-1	.6		
Recasting(C_A)	30.05	10.38	120.61M	3.12B	3.2 ×
ThiNet-Conv [1]	30.20	10.47	131.44M	4.79B	$2.5 \times$
RNP (3×) [3]	-	12.42	-	-	$2.3 \times$
Channel Pruning $(3 \times)$ [4]	-	11.10	-	-	$2.5 \times$
AutoPruner $(r = 0.4)$ [2]	31.57	11.57	-	4.09B	-

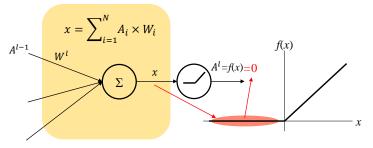
Comparison with previous works. (batch size is 64, NVIDIA Titan X (pascal))

Zero Skipping Exploiting zeros in inputs J. Albericio et al., "Cnvlutin: ineffectual-neuron-free deep neural network computing," ISCA, 2016 P. Judd et al., "Stripes: Bit-serial Deep Neural Network Computing," Computer Architecture Letters, 2016 D. Kim et al., "ZeNA: Zero-Aware Neural Network Accelerator," IEEE Design & Test, Feb. 2018 Exploiting zeros in outputs • V. Akhlaghi et al., "SnaPEA: Predictive Early Activation for Reducing Computation in Deep Convolutional Neural Networks," ISCA 2018 D. Lee et al., "ComPEND: computation pruning through early negative detection," ICS, 2018 For training G. Lee et al., "Acceleration of DNN Backward Propagation by Selective Computation of Gradients," DAC 2019, to be presented.

Zero Skipping

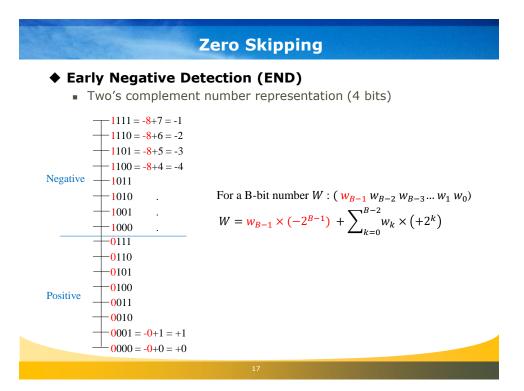
ComPEND

- Computation Pruning through Early Negative Detection
- Motivation
 - Perceptron model



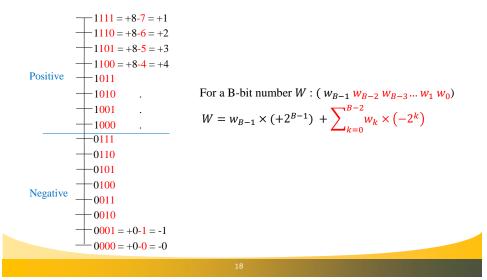
- Rectified linear unit (ReLU, [f(x) = max(0,x)]) is widely used as an activation function for DNN
- If we know a priori that $x \leq 0$, we can skip unnecessary computations

D. Lee et al., "ComPEND: computation pruning through early negative detection," ICS, June 2018.

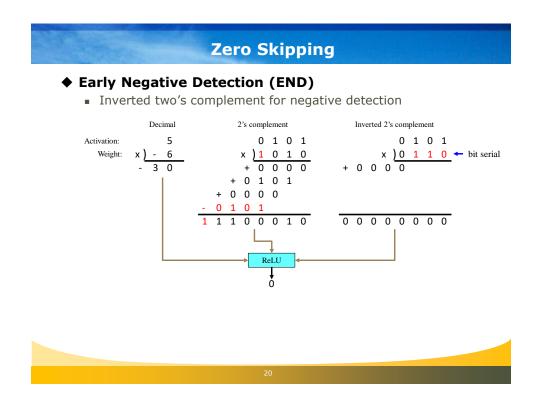


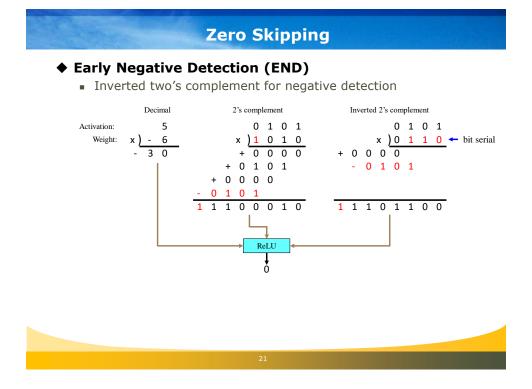
Early Negative Detection (END)

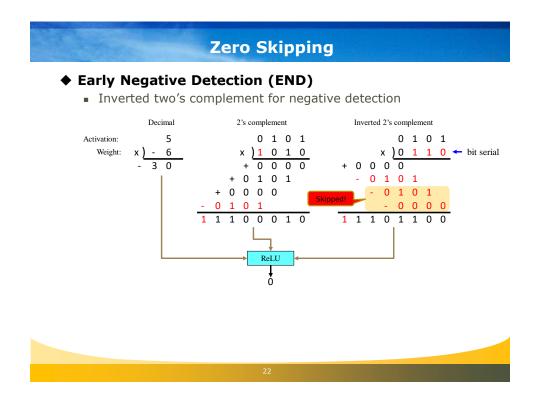
Inverted two's complement number representation (4 bits)



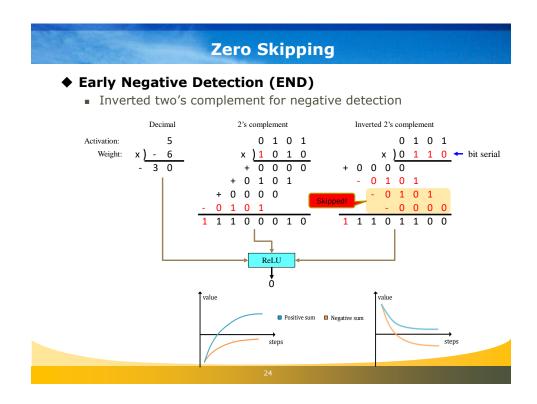
Zero Skipping Early Negative Detection (END) Inverted two's complement for negative detection 2's complement Decimal 5 $0 \ 1 \ 0 \ 1$ Activation: Weight: x) - 6 x)1010 - 30 + 0 0 0 0 + 0 1 0 1 + 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0 ReLU ł

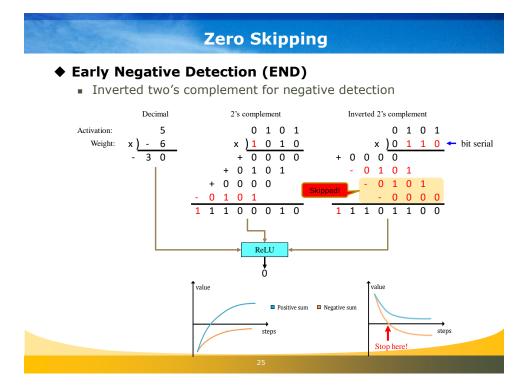






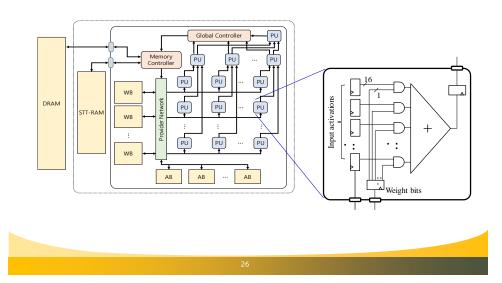
Zero Skipping Early Negative Detection (END) Inverted two's complement for negative detection 2's complement Decimal Inverted 2's complement Activation: 5 0 1 0 1 0 1 0 1 x <u>) 0 1 1 0</u> - bit serial Weight: x)_ - 6 x)1010 - 30 + 0 0 0 0 + 0 0 0 0 + 0 1 0 1 - 0 1 0 1 0 1 0 1 + 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 0 0 1 0 **1** 1 1 0 1 1 0 0 ReLU ţ value Positive sum steps





Zero Skipping

ComPEND architecture

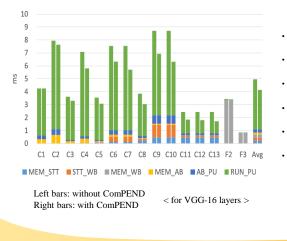


	Zero Sk	cipping			
Comparison with other architectures					
	Eyeriss	DaDianNao	ComPEND (w/o zero-skipping)		
Precision	16	16	16		
Technology	65 nm	28 nm	45 nm		
Clock frequency	250 MHz	606 MHz	1000 MHz		
Throughput	42 GMACS	2,790 GMACS	288 GMACS		
Core Area	12.25 mm ²	67.73 mm ²	5.62 mm ²		
Area efficiency	3.43 GMACS/mm ²	41.19 GMACS/mm ²	51.25 GMACS/mm ²		
Power	450 mW	15,970 mW	1,180 mW		
Power efficiency	93.3 GMACS/W	174.7 GMACS/W	244.1 GMACS/W		

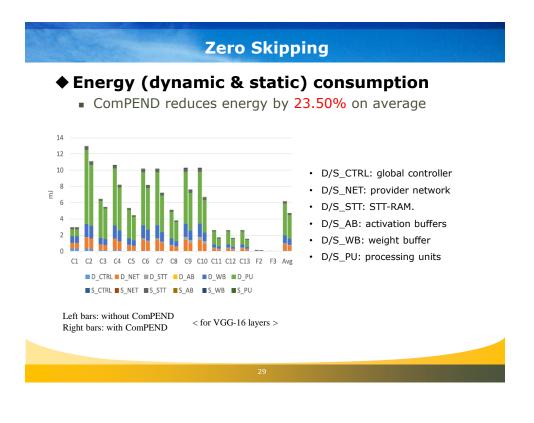
Zero Skipping

♦ Runtime

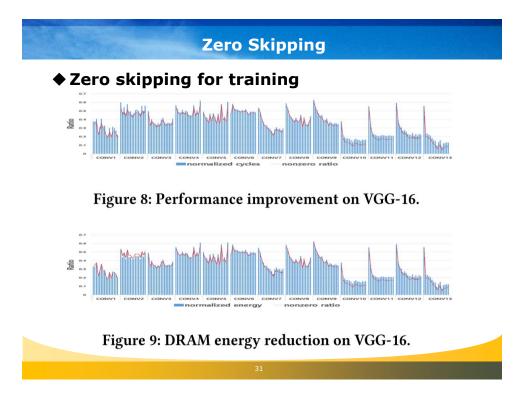
ComPEND reduces runtime by 16.62% on average



- MEM_STT: reads/writes between off-chip memory and STT-RAM
- STT_WB: runtime of reads/writes between STT-RAM and WB
- MEM_WB: reads/writes between off-chip memory and WB
- MEM_AB: reads/writes between off-chip memory and AB
- AB_PU: reads/writes between AB and registers in PUs
- RUN_PU: computation in PUs



<section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

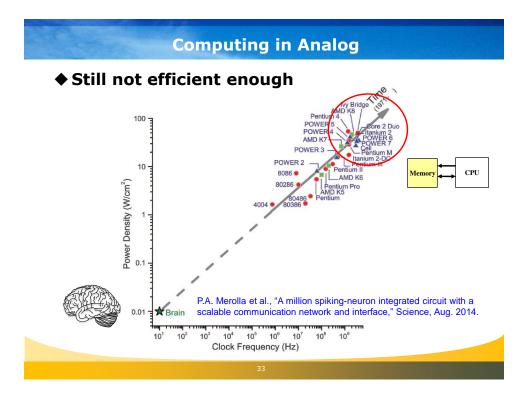


♦ Inference

- 8-bit
 - Google TPU 1
- Binary
 - Trade-off between precision and accuracy

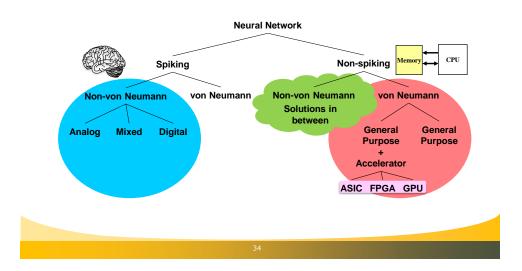
Training

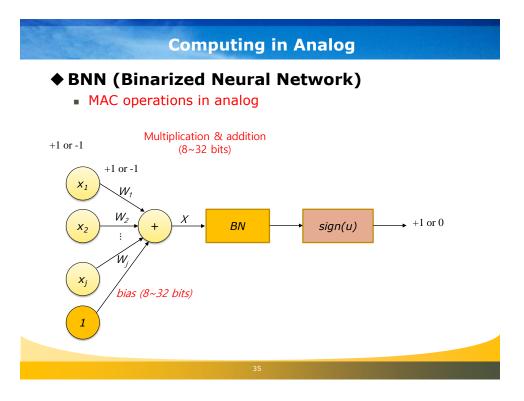
- Dynamic fixed-point
 - Bengio
 - DAL
- 16-bit FP
 - NVDIA: half-precision FP, 1-5-10, scaling
 - Google: bfloat, 1-8-7
- 8-bit
 - IBM: stochastic rounding
 - Intel: range batch normalization + bifurcation



Computing in Analog

Various ways of implementing neural networks

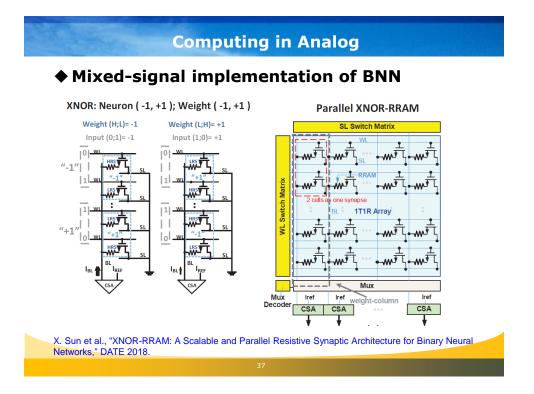


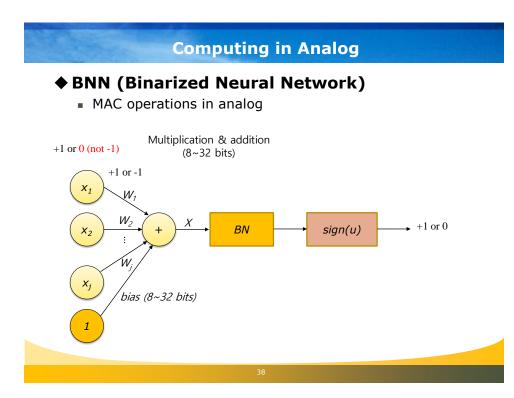


Computing in Analog

Accuracy

Network	w	Act	CIFAR-10 ACC (4 conv, 2 fc)	CIFAR-10 ACC (6 conv, 3 fc)
DNN (baseline)	Float32	Float32	85.60%	91.11%
BWN	1-bit (1, -1)	Float32	84.21% (-1.39%p)	90.64% (-0.47%p)
BNN	1-bit (1, -1)	1-bit (1, -1)	77.13% (-8.47%p)	88.89% (-2.22%p)





Computing in Analog

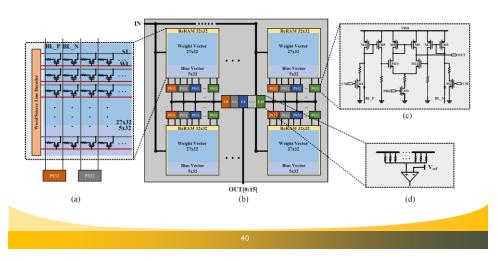
Binarized Spiking Neural Network (BSNN)

32 Float32 , -1) Float32 , -1) 1-bit (1, -1	85.60% 84.21% (-1.39%p) 77.13%	91.11% 90.64% (-0.47%p) 88.89%
	(-1.39%p)	(-0.47%p)
, -1) 1-bit (1, -1) 77 13%	88 800%
	(-8.47%p)	(-2.22%p)
32 1-bit (1, 0)	78.73% (-6.87%p)	88.01% (-3.1%p)
, -1) 1-bit (1, 0)	77.25% (-8.35%p)	87.85% (-3.26%p)
		(-6.87%p) , -1) 1-bit (1, 0) 77.25%

Computing in Analog

ReRAM-based implementation of BNN

- 27x32 binary weights + 5x32 biases in a tile
- Array of tiles



Computing in Analog Comparison ASP-DAC '1 ISLPED '17 DATE '18 ISSCC '18 JSSC '17 Ours Implementation 7 CNN CNN CNN MVM CNN MLP Network 0.26M 1.26M 14.03M 0.07M 1.88M 0.53M # Parameters 65nm 45nm 40nm 65nm 28nm 32nm Technology Human brain 2.1ns • Power consumption: ~10W 0.15 Ar • Number of synapses: ~10¹⁵ 519.6 Ро • Firing rate of one synapse: ~10 spikes/sec • Max. power efficiency: $10^{15} \times 10 / 10 = 1$ POPS/W 1.09 Er Energy efficiency 0.048 0.962* 126 141 532 970 (TOPS/W) * Data calculated based on the numbers in the paper How good is ~1 POPS/W?

For an efficient neural processing

- Network reduction
- Zero skipping
- Low-precision computing
- Computing in analog
- ····

Many new areas to be explored

- Exploiting NVMs and in-memory-computing
- Exploiting information in timing
- Spiking neural network
- New training algorithm for efficiency
- …